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When a bubble collapses mildly the interior pressure field is spatially uniform; this is
an assumption often made to close the Rayleigh–Plesset equation of bubble dynamics.
The present work is a study of the self-consistency of this assumption, particularly
in the case of violent collapses. To begin, an approximation is developed for a
spatially non-uniform pressure field, which in a violent collapse is inertially driven.
Comparisons of this approximation show good agreement with direct numerical
solutions of the compressible Navier–Stokes equations with heat and mass transfer.
With knowledge of the departures from pressure uniformity in strongly forced bubbles,
one is in a position to develop criteria to assess when pressure uniformity is a
physically valid assumption, as well as the significance of wave motion in the gas.
An examination of the Rayleigh–Plesset equation reveals that its solutions are quite
accurate even in the case of significant inertially driven spatial inhomogeneity in the
pressure field, and even when wave-like motions in the gas are present. This extends
the range of utility of the Rayleigh–Plesset equation well into the regime where the
Mach number is no longer small; at the same time the theory sheds light on the
interior of a strongly forced bubble.

1. Introduction
In applications such as ultrasonic imaging, shock wave lithotripsy, sonochemistry,

and sonoluminescence, micron sized bubbles are forced into radial oscillations by
pressure waves in the surrounding medium. Bubbles under these conditions typically
undergo long slow expansions and violent collapses. The collapse compresses the
bubble rapidly, with the consequence that the contents can reach temperatures extreme
enough to emit light (sonoluminescence). Significant gas-phase chemical reactions can
occur in the bubble interior (relevant to sonochemistry).

The general behaviour of the bubble oscillations can be captured by the Rayleigh–
Plesset equation: a nonlinear ODE derived from the Navier–Stokes equations of the
liquid under the assumption of spherical symmetry. In order to close the Rayleigh–
Plesset equation, one usually assumes that the gas in the bubble has uniform pressure
and undergoes on average a polytropic thermodynamic process. It is an accepted
notion by some researchers that if the (gas) Mach number of the bubble wall is not
small then the pressure field in the bubble will be non-uniform (Putterman et al. 2001);



146 H. Lin, B. D. Storey and A. J. Szeri

in this case the gas dynamics is expected to be characterized by wave-like motion.
The pressure field in the bubble, the nature of the gas dynamics, and the formation
of shock waves have been the subject of a number of studies including Chu (1996),
Greenspan & Nadim (1993), Kwak & Na (1997), Lin & Szeri (2001), Prosperetti,
Crum & Commander (1988), Prosperetti (1991), and Vuong, Szeri & Young (1999),
among others.

In spite of this conjectured correlation between the Mach number and the pressure
non-uniformity, the ‘uniform [pressure] bubble model appears to be quite successful
in describing the basic facts’ of sonoluminescence (Hammer & Frommhold 2001),
even when Mach number is not small. Earlier researchers made attempts to give an
explanation from an acoustical perspective (Trilling 1952), whereas in this work we
explore the inhomogeneity of the bubble from a hydrodynamic view.

Based on the present analysis and on an examination of detailed simulations of the
gas dynamics in the bubble interior, we have concluded that there is much evidence
to challenge the importance of the Mach number in judging the expected spatial
uniformity of the pressure field. In the case of violently collapsing microbubbles, we
shall argue that the Mach number is not the distinguishing parameter, due to the
relatively small size of the bubble compared to a pressure wavelength we define below.
Compression waves in a small confined domain behave rather differently than in a
semi-infinite domain: a geometry in which use of the Mach number (and much of
one’s intuition) is based. Instead, we shall derive a dimensionless acceleration whose
smallness is directly related to the uniformity of the pressure field in the bubble. The
dimensionless acceleration is involved in an expression for a spatially non-uniform
pressure field. We find this expression to be quite accurate when compared with
detailed numerical simulations. Also developed are the criteria to judge the validity
of the uniform pressure assumption as well as the non-uniform pressure solution.
When these criteria are violated one can anticipate wave-like gas dynamics. The
analysis presented in this paper greatly extends the range of parameter space where
the classical Rayleigh–Plesset equation (RPE) is useful, at least with respect to the
uniform pressure assumption.

The plan of the paper is as follows. In §§ 2–4, we develop the approximation for
inertially driven inhomogeneity in the pressure field, and compare the approximate
pressure fields to DNS. In § 5, we discuss the consequences of heat transfer. In § 6,
we explore the changes that result in solutions of the RPE if one uses the non-
uniform pressure approximation to close the equation rather than the customary
spatially uniform pressure approximation. Finally, in § 7 we identify different regimes
of bubble dynamics, and summarize our findings concerning the physical validity and
quantitative accuracy of the uniform pressure closure of the RPE.

2. The dimensionless quantity εp
We start with a heuristic derivation of a dimensionless time-dependent acceleration

that will serve as an indicator for pressure non-uniformity. Its utility will be considered
in the following sections.

We begin with the Euler equations as the governing equations for the gas in a
bubble assuming spherical symmetry:

1
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(
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+ v

∂v

∂r

)
= −∂p

∂r
, (2.2)

p

ρk
= constant. (2.3)

Here ρ is the density of the gas in the bubble, v is the radial velocity, p is the gas
pressure, and k is the polytropic index (with 1 6 k 6 γ). A scaling argument for the
neglect of viscosity can be found, for example, in Prosperetti et al. (1988). The validity
of the polytropic approximation will be discussed later.

Prosperetti (1991) developed an asymptotic analysis of the Euler equations, in-
cluding heat transfer, in the interior of oscillating bubbles. The small parameter is
M2

0 ≡ (ωR0)
2ρ0/p0, where ω is the driving frequency, R is the bubble radius, M is a

Mach number, and the subscript 0 denotes an equilibrium quantity. The leading-order
result of this asymptotic analysis is a solution featuring spatially uniform pressure,
while the first correction corresponds to an inertially driven spatial non-uniformity in
the pressure. As equilibrium quantities are used in the definition of the small param-
eter in the theory, it can be anticipated that the domain of application is limited to
bubbles not far from equilibrium. In fact, Prosperetti himself writes that the results do
not ‘necessarily extend to the case of the catastrophic collapse of cavitation bubbles
during which the radius can undergo an order-of-magnitude decrease’.

Motivated by this observation we search for an appropriate parameter that will
serve to distinguish pressure non-uniformity in the case of violent collapses. We begin
by assuming that pressure is spatially uniform, i.e. a function of time only

p = p̄(t). (2.4)

Now we shall examine the self-consistency of this assumption. From the polytropic
relation (2.3) density also must be a function of time only. The total mass of the gas
in the bubble is conserved; this leads to

ρ = ρ̄(t) = ρ0(R0/R(t))3. (2.5)

We substitute this expression for ρ into the continuity equation (2.1), solve for the
velocity field and obtain

v̄ =
Ṙ

R
r. (2.6)

Now we substitute (2.5) and (2.6) into the balance of radial momentum (2.2), and
obtain an expression for the pressure gradient:

∂p

∂r
= − ρ̄R̈r

R
. (2.7)

This can be immediately integrated to obtain

p(r, t) = pc(t)

[
1− 1

2

ρ̄R̈R

pc

( r
R

)2
]

= pc(t)

[
1− γ

2
εp

( r
R

)2
]
, (2.8)

where pc(t) ≡ p(r = 0, t), and we have defined the dimensionless quantity

εp ≡ RR̈

ā2
, (2.9)

with ā ≡ √γpc/ρ̄. This demonstrates that the assumed solution of uniform pressure
is only exactly self-consistent if the quantity εp, which may be regarded as a dimen-
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sionless acceleration, is zero. One can expect it may be a good approximation if εp is
small.

Next we need to check the continuity equation for self-consistency, as the assump-
tion of uniform pressure led immediately to the result that density is also uniform.
The polytropic relation relates the spatial gradient of density to that of the pressure
as

1

ρ

∂ρ

∂r
=

1

k

1

p

∂p

∂r
∼ 1

kpc

ρ̄R̈r

R
. (2.10)

We compare the spatial density variation term to others in the continuity equation
(2.1) and obtain
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2
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. (2.11)

Thus when εp is zero, the assumption of spatially uniform pressure also leads to exact
self-consistency in the continuity equation.

Hence, the same dimensionless quantity εp must be zero for self-consistency of the
balance of linear momentum and of the continuity equation. When the parameter
εp is small but non-zero, and the other terms in these equations are not small, then
uniform pressure and density are in error, but the errors are small.

This straightforward analysis forces us to confront the question of the relevance
of the Mach number to the spatial uniformity of the pressure. Note that as long as
Ṙ = constant, εp = RR̈/a2 = 0 and (2.4), (2.5), (2.6) constitute an exact solution of
the Euler equations. Theoretically one could set up a constant bubble wall velocity
to obtain an arbitrarily large Mach number, yet the uniform pressure field is still
a solution; however, we emphasize that the stability of (2.4), (2.5), (2.6) has not
been verified. Nevertheless, we have found that in numerical simulations, a uniform
pressure field is observed in collapses with Ṙ = constant and M = Ṙ/ā not small.

If we approach from a different perspective, the dimensionless quantity εp has an
interesting physical interpretation. We can rewrite εp as the ratio of two time scales

εp =
τ1

τ2

, (2.12)

with τ1 = R/ā, τ2 = ā/R̈. We interpret τ1 as the time scale for a disturbance to travel
through the bubble radius, and τ2 as a time scale associated with the bubble wall
acceleration. This suggests that the uniformity of the pressure within the bubble is
really determined by the acceleration of the wall. Even in the situation of a violent
collapse with R̈/ā being a very large quantity, the number τ1 may be small enough
in a minute bubble to make εp small – with fairly uniform pressure and density in the
gas as the net result.

The quantity εp can also be understood from an acoustical point of view.† We
define an acceleration time scale τa as τ2

a ≡ R/R̈. A wavelength λ can then be defined
as λ2 ≡ ā2τ2

a = ā2R/R̈. The pressure field will be uniform if R2 � λ2, i.e. if εp � 1.
A plot of the dimensionless quantity εp during a typical (violent) collapse is shown

in figure 1. It is calculated ex post facto using (2.9), with the values of R, R̈ and
ā =

√
γpc/ρ̄ obtained from a full compressible Navier–Stokes calculation (DNS,

see table 1) of the bubble interior (Storey & Szeri 1999, 2000). For the purpose of

† We thank an anonymous referee, who suggested the alternative understanding in this paragraph.
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Figure 1. A comparison of εp (dashed curve, equation (2.9)), ε∗p (solid, equation (2.14)) and the
Mach number (dot-dashed), which demonstrates that the approximation εp can give information
about pressure non-uniformities that agrees with DNS (ε∗p). Meanwhile the Mach number exceeds
unit magnitude over a time interval that appears to be not so well correlated with the pressure
non-uniformity observed by DNS. The parameter values are the same as shown in table 1, case b,
except that the dimensionless driving pressure amplitude is set to be Pa = 1.25.

Case R0 (µm) T0 (K) Pa

a 4.5 298 1.1
b 4.5 298 1.2
c 4.5 298 1.3
d 4.5 278 1.2
e 4.5 308 1.2
f 4.5 318 1.2
g 2.5 298 1.2
h 6.5 298 1.2
i 8.5 298 1.2

Table 1. Parameter values for cases considered in the paper. For DNS, we make use of a full
compressible Navier–Stokes simulation with convective/diffusive heat and mass transfer, phase
change, and chemical reactions. For equation of state in the DNS, we use the Soave–Redlich–Kwong
equation (Reid, Prausnitz & Poling 1987). R0 is the ambient bubble radius, T0 is the ambient
temperature, and Pa is the dimensionless driving pressure amplitude. Other parameters are: driving
frequency fd = 26 500 Hz, and ambient pressure P0 = 101.325 kPa. The gas content is argon, with
dynamic fraction of water vapour determined by evaporation/condensation/diffusion. Note that
different R0 and T0 may result in different amounts of water vapour trapped in the bubble. For
details of the numerical simulation see Storey & Szeri (2000).

comparison we also show the gas Mach number M = Ṙ/ā, with the values of Ṙ and
ā from DNS as well. Finally, in order to verify that εp is indeed a suitable indicator
for pressure inhomogeneity, we invert (2.8) formally to obtain

εp =
2

γ

(
1− p

pc

)/(
r

R

)2

. (2.13)
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This expression can be evaluated at the bubble surface r = R, which yields

ε∗p =
2

γ

(
1− pw

pc

)
. (2.14)

Here the subscript w denotes a quantity evaluated at r = R, and we have distinguished
ε∗p from εp defined in (2.9) because we compute ε∗p with the values of pw and pc from
DNS instead. The result of this exercise is also shown in figure 1. It is clear that
the dimensionless quantity εp obtained from (2.9) has a very similar value to the
dimensionless centre-to-wall pressure difference measured in terms of ε∗p using (2.14).
As a hint of developments to come, this suggests that (2.8) is a fairly accurate
representation of the spatially inhomogeneous pressure field in the bubble. To avoid
confusion, although εp and ε∗p are both calculated using DNS values, εp is a result
we are testing against the ‘real’ pressure inhomogeneity measured by ε∗p. Meanwhile
changes in the Mach number seem not to be so well correlated with those in ε∗p.

We make two further observations about the comparison between εp and ε∗p in
figure 1. First, the DNS includes both heat and mass transfer, while (2.8) is derived
under the idealized model (2.1), (2.2), (2.3). Secondly, equation (2.8) was obtained while
arguing that the uniform pressure approximation is approximately self-consistent
when εp is small. However, as one observes in the figure, εp is not small. The situation
depicted in figure 1 would appear to violate the ansatz of the arguments in two basic
ways. Nevertheless, one observes that εp and ε∗p are in close agreement.

In the following sections we study the reasons why the parameter εp and related
quantities are accurate indicators of spatial inhomogeneity. Indeed, we can compute
in terms of εp the departure of the pressure field from uniform, owing to inertial
effects. Moreover, the quantity εp plays a role in assessing the onset and strength of
wave-like motions in the gas.

3. Inertial departure from uniform pressure when εp = constant
In order to understand better the physical significance of the quantity εp, we first

consider a situation where it arises rather naturally, albeit only as a constant. We
have stated that when εp = 0, then (2.4), (2.5), (2.6) comprise an exact solution to
the Euler equations (2.1), (2.2), (2.3). In the case when εp is a finite constant, Chu
(1996) has observed a ‘similarity’ structure in the gas dynamics; however, in that
work he stops at the conclusion that εp must be a constant in order for the similarity
structure to exist. The interested reader will note that in his equation (10), the first
term is RR̈/2hc(t), expressed in terms of the enthalpy at the bubble centre hc(t). This
is readily verified to be equivalent to the present εp. In this section we follow the
analysis of Chu (1996), with the slight change to take into account the overall mass
balance. However, we press on and develop an explicit set of similarity solutions.

In the following we assume that εp is constant. The first interesting observation is
that, if the velocity possesses a linear form as in (2.6), then the continuity equation
(2.1) admits a non-uniform density field

ρ(r, t) = ρ̄(t)f(x) = ρ0

(
R0

R(t)

)3

f

(
r

R(t)

)
, (3.1)

where x ≡ r/R(t), and ρ̄(t) is as defined in (2.5). Next, we assume that the velocity
and density fields are as given in (2.6) and (3.1) and substitute them into the balance
of radial momentum (2.2); we finally integrate from 0 to r to obtain an expression
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for the pressure:

p(r, t) = pc(t)

(
1− γεp

∫ x=r/R

0

yf(y) dy

)
. (3.2)

This expression for the pressure is in turn substituted into the energy equation to
obtain a second expression for density:

ρ(r, t) = ρc(t)

(
1− γεp

∫ x

0

yf(y) dy

)1/k

, (3.3)

where ρc(t) ≡ ρ(r = 0, t). Evidently, the two expressions for the density field (3.1) and
(3.3) must be equal for a self-consistent solution. This leads directly to

ρ̄(t)f(x) = ρc(t)

(
1− γεp

∫ x

0

yf(y) dy

)1/k

, (3.4)

or, in fact, the nonlinear integral equation

f(x) = f(0)

(
1− γεp

∫ x

0

yf(y) dy

)1/k

. (3.5)

In the latter we have made use of ρc(t) = ρ̄(t)f(0). Finally we recast this integral
equation as a differential equation to enable a solution; differentiation yields

−kf(x)k−2f′(x)

f(0)k
= γεpx. (3.6)

The ODE can be solved in closed form. When k = γ one obtains

f(x) = f(0)

(
1− (γ − 1)

2
εpf(0)x2

)1/(γ−1)

, (3.7)

hence

ρ(r, t) = ρ̄(t)f(0)

(
1− (γ − 1)

2
εpf(0)x2

)1/(γ−1)

(3.8)

and

p(r, t) = pc(t)

(
1− (γ − 1)

2
εpf(0)x2

)γ/(γ−1)

; (3.9)

while if k = 1 one finds an exponential form of f(x):

f(x) = f(0) exp(− 1
2
γεpf(0)x2), (3.10)

which yields

ρ(r, t) = ρ̄(t)f(0) exp(− 1
2
γεpf(0)x2) (3.11)

and

p(r, t) = pc(t) exp
(− 1

2
γεpf(0)x2

)
. (3.12)

The only quantity that remains to be determined to fix the solution is f(0). This
can be found from the overall mass conservation of the bubble, i.e.∫ R

0

ρ̄f(x)4πr2 dr = 4
3
πR3ρ̄. (3.13)

In general this integral must be carried out numerically. However in the case of
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present interest (see figure 1), where εp is a small quantity, we can approximate f(0)
by an asymptotic expansion.†We carry out the calculation for k = γ, as follows. First,
we expand equation (3.8) assuming εpf(0)� 1 and obtain

ρ(r, t) ≈ ρ̄(t)f(0)

(
1− 1

2
εpf(0)x2 +

2− γ
8

ε2
pf(0)2x4 + · · ·

)
. (3.14)

Here we keep only terms to the second order. With this approximation we can then
explicitly evaluate equation (3.13) to obtain

f(0)− 3
10
εpf(0)2 + 3

56
(2− γ)ε2

pf(0)3 = 1. (3.15)

Now we assume that f(0) takes the asymptotic form

f(0) = 1 + Aεp + Bε2
p + · · · , (3.16)

where A and B are constants to be determined. We substitute it into equation (3.15),
equate like powers of εp and obtain

f(0) = 1 + 3
10
εp +

102 + 75γ

1400
ε2
p + · · · . (3.17)

Similarly, we can carry out the calculation for the case k = 1. To a first-order
approximation (which is sufficient in most of the cases), we have a unified formula
for f(0) for both k = 1 and k = γ as

f(0) = 1 +
3γ

10k
εp + · · · . (3.18)

In the same spirit, one can simplify (3.8) and (3.9) by Taylor expansion for small
εp using (3.18), to obtain

ρ(r, t) = ρ̄
[
1 +

γ

2k
εp(

3
5
− x2)

]
, (3.19)

p(r, t) = pc(t)(1− 1
2
γεpx

2). (3.20)

Note that (3.20) has appeared before as (2.8).
Despite the fact that (3.18), (3.19), (3.20) have been obtained in an argument where

εp is supposed to be small, the formulae are quite accurate up to |εp| ∼ 1, owing to
the smallness of the remainder in the expansion. (As an illustration, consider εp = −1.
From the fully nonlinear expressions (3.13), (3.8), (3.9) one obtains f(0) = 0.8,
ρw/ρ̄ = 1.14, and pw/pc = 1.81. From the small-εp approximations (3.18), (3.19),
(3.20), one finds f(0) = 0.7, ρw/ρ̄ = 1.2, and pw/pc = 1.83. For further illustration, see
figure 2.) Finally, we note that both the near-adiabatic and near-isothermal formulae
deliver the same expressions for small εp. Thus (3.19) and (3.20) may be used for both
cases.

A further observation concerning (3.20) is that it is equivalent to the Bernoulli
equation

p(r, t) = pc(t)− ρ̄(t)

(
∂φ

∂t
+ 1

2
|∇φ|2

)
, (3.21)

where

φ ≡ 1
2
RṘx2 (3.22)

is the corresponding velocity potential of (2.6). Hence if one is concerned only with

† We thank an anonymous referee, who suggested the development shown in this paragraph.
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Figure 2. A comparison of pw/pc determined from (3.9) (solid) and from the simpler
approximation (3.20) (dashed) over a wide range of values of εp.

the pressure field, a uniform density ρ̄(t) can be used for inertia to give a fair
approximation.

4. Inertial departure from uniform pressure when εp is time dependent
Now we have an exact solution to the governing equations (2.1), (2.2), (2.3) under

the condition that εp = constant. A natural question is, is this solution useful in the
case of interest, where εp is a function of time?

We consider again the violently collapsing bubble of figure 1. Except during the
slow expansion and the after-bounces where εp is almost zero (not shown), it varies
considerably with time. However, if we naively use a time-dependent εp(t) (calculated
with (2.9) ex post facto from DNS) in (3.8), (3.9), i.e. in

ρ(r, t) = ρ̄(t)f(0)

(
1− γ − 1

2
εp(t)f(0)x2

)1/(γ−1)

, (4.1)

p(r, t) = pc(t)

(
1− γ − 1

2
εp(t)f(0)x2

)γ/(γ−1)

, (4.2)

we observe a fairly close agreement with the DNS calculation of the pressure field, as
shown in figures 3 and 4. These results encompass a brief period of time around the
minimum radius, where k = γ is valid; εp is otherwise small. Thus in the following we
shall phrase the discussion in terms of the case k = γ, but the analysis and conclusions
extend to the case k = 1 as well.

As suggested by examination of figures 3 and 4, the inertial departure from
uniform pressure developed following the assumption of constant εp evidently applies
equally well to the case where εp varies with time. The question then is, why is the
approximation accurate, and when can it be expected to remain so?

In order to investigate the errors in the approach, let us suppose that εp is a ‘slow’
function of time, where the meaning of ‘slow’ will emerge in due course. The density
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Figure 3. In the case of the same parameter values as figure 1, but on a much smaller time scale,
there is close agreement between pw/pc from DNS (dashed) and the approximation (4.2) (solid,
where εp is calculated with the values of R, R̈ and ā from DNS) for the critical interval around the
major collapse.
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Figure 4. Snapshots of (a) velocity and (b) pressure fields at times relative to the time of minimum
radius for the bubble in figure 1. The solid curves are from DNS and the dashed curves are the
approximations (4.2), (2.6).

and pressure fields (4.1), (4.2) may be written in the form

ρ(r, t) = ρ̄(t)f(εp(t), x), (4.3)

p(r, t) = pc(t)g(εp(t), x). (4.4)

When εp is no longer constant, we can expect a deviation from linearity in r in the
velocity field as well. Hence we write

v(r, t) = v̄(1 + εv(r, t)), (4.5)

where v̄ is as given in (2.6). The strategy now will be to determine when (4.3), (4.4),
(4.5) are self-consistent. We shall observe that they are not, in general, and develop a
convenient measure for the error. To begin, we substitute (4.3), (4.5) into the continuity
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equation to obtain

ρ̄(t)
∂f

∂εp
ε̇p +

1

r2

∂

∂r
[r2ρv̄εv] = 0. (4.6)

This is integrated to obtain

εv(r, t) = − 1

ρv̄r2

∫ r

0

ρ̄(t)
∂f

∂εp
ε̇pr

2dr. (4.7)

Now we shall assume that εv is small, in accordance with the assumption of ‘slow’
changes in εp; note that εv = 0 for ε̇p = 0. To find the error associated with the
pressure solution, we substitute (4.3), (4.7) into the balance of radial momentum and
integrate from 0 to r to obtain

p(r, t) = pc(t)−
∫ r

0

ρ

(
Dv̄

Dt
+
∂(v̄εv)

∂t
+
∂(v̄2εv)

∂r

)
dr. (4.8)

Here we have neglected higher-order terms in εv . If we substitute (4.4) for p(r, t) into
this equation, after cancellations we are left with a residual

0 = −
∫ r

0

ρ

(
∂(v̄εv)

∂t
+
∂(v̄2εv)

∂r

)
dr. (4.9)

For convenience we shall define a new dimensionless error measure based on this
residual as

εerror =
1

pc

∫ R

0

ρ

∣∣∣∣∂(v̄εv)

∂t
+
∂(v̄2εv)

∂r

∣∣∣∣ dr. (4.10)

Note we have used the absolute value in the integrand, to prevent cancellation of
the accumulative error along with the integration. Evidently, if εerror is small, then
equations (4.3), (4.4), (2.6) serve as good approximation to the solution of the Euler
equations (2.1), (2.2), (2.3). This we shall take as a definition of ‘slow’ changes in εp(t).
To proceed any further, owing to the complicated algebraic dependence of f(0) on
εp, (4.7), (4.10) must be evaluated numerically.

However, if we make use of (3.19), (3.20) but with εp(t) time dependent, it is
possible to obtain explicit, convenient expressions for both εv and εerror . The integral
in expression (4.7) may be evaluated as

εv = − γ

10k
ε̇p
R

Ṙ
(1− x2). (4.11)

Note that the apparent singularity in εv when Ṙ → 0 is an artifact of the form assumed
rather than anything physical. (See (4.5), in which v̄ = Ṙx.) The dimensionless error
estimate is

εerror ≡ perror

pc
=
ρ̄R

pc

∣∣∣∣ γ2k
(

1

20
+

γεp

150k

)(
2Ṙε̇p + Rε̈p

)∣∣∣∣ . (4.12)

For the case of figures 1 and 3–4, we show the corresponding εerror in figure 5. Except
for a brief moment around the minimum radius, εerror is small, although εp is not
always small. Thus we have verified that (4.1), (4.2), (2.6) can indeed be a good
approximation to the solution of the Euler equations (2.1), (2.2), (2.3) even when εp
is time dependent and not small.
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Figure 5. The error measure εerror (dashed) for the bubble of figure 1. For reference also plotted
is εp (solid). As in the previous figures both εerror and εp are obtained using DNS values in the
expressions (4.12) and (2.9).

5. Influence of heat transfer
An unresolved point is that despite the use of the polytropic equation (2.3), figure 3

has shown surprisingly good agreement between the approximation (4.2) and DNS.
This is true notwithstanding the fact that in the latter both heat and mass transfer
are included. In this section we consider the reasons for this.

When a bubble undergoes a violent collapse, the gas in the bubble is rapidly heated.
The temperature at the centre can rise by more than an order of magnitude, while
the temperature at the bubble interface remains much closer to ambient owing to
the large heat capacity of the liquid. A thin thermal boundary layer forms in the
gas near the bubble wall while the gas deeper in the interior typically has a fairly
uniform temperature. There is vigorous heat flux during the late stages of collapse,
but little heat is lost compared to the amount that is stored in the bubble. The
interior temperature remains uniform because the collapse is so rapid that heat in
the interior has insufficient time to escape through the bubble wall (Hickling 1963;
Storey & Szeri 2001). In the boundary layer the density increases sharply, and velocity
correspondingly departs from linearity. In spite of these deviations due to the thermal
behaviour, the analysis of the foregoing sections is still valid in the bubble interior,
owing to the fact that (2.3) is approximately satisfied there.

To further complicate matters, water is constantly evaporating and condensing at
the bubble wall – an effect that has been neglected in the present analysis. Instead,
we have assumed that the mass of the bubble contents is constant. This is a valid
assumption over the time scale of interest around a violent collapse as shown in
Storey & Szeri (2000). To account for vapour, we can simply define ρ̄(t) to be the
total mass of gas and vapour divided by the volume, and the analysis thus follows.

We note that in (3.2), the pressure field involves the integral of density times
acceleration. Although there is a significant deviation of the density field from our
idealization (4.1), the average density ρ̄(t) is accurate. We find that the influence
of density variation in the pressure formula (4.2) is suppressed through integration,
owing to the relatively small thickness of the thermal boundary layer. In figure 6 we
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Figure 6. A typical density profile in a violently collapsing bubble (solid curve). The dashed line is
the averaged density ρ̄(t) = ρ0(R/R0)−3. This is case c of table 1 at time t = 0 ns.

show a typical density distribution within the bubble along with the average density.
We find that carrying out the integral for pressure (3.2) using the true density field or
the average results only in a 2% error in this typical case.

Evidently, the assumption of an average density suffices to provide a rather good
estimate for the integral in equation (3.2). As this result has been verified well by
extensive comparisons with DNS, we assert (but without proof, nor is it necessarily
true in all circumstances) that in the near-adiabatic limit although ρ and T (temper-
ature) may show significant non-homentropic behaviour, the dynamical fields v and
p in (2.6) and (4.2) are good approximations; that is to say, the latter are only weakly
coupled with the former. The physical reason is that the pressure inhomogeneity is
mainly driven by inertia.

In figure 7 we show several comparisons of εp (the approximation (2.9)) to ε∗p (the
actual pressure non-uniformity (2.14)) to support this point. The plots correspond to
a variety of cases. In all the cases we have the same parameter values as in figures 1
and 3–5, but we vary R0, T0 and Pa as listed in table 1. Note that we have focused
on the parameter range of tiny bubbles and high-amplitude forcing, which represents
the most violent collapses allowed for stable bubbles. (For the stable parameter range
see e.g. Hilgenfeldt, Lohse & Brenner 1996.)

The only cases where the approximation deviates from the numerics significantly are
(c) and (f ), although it is perhaps difficult to see on the time interval shown. In these
two calculations the exceptionally violent collapse traps large amounts of vapour.
As a consequence of the associated decrease in the ratio of specific heats, the gas is
more easily compressed. The gas dynamics briefly features strong wave-like motions
and (4.2) is (briefly) not applicable. This topic will be further explored following
a discussion of the accuracy and validity of the RPE vis-à-vis the assumption of
uniform pressure.

Interested readers are referred to Prosperetti et al. (1988) (equation (14)) for a
reduced model with non-uniform temperature field, a corresponding correction to the
linear velocity field due to heat transfer, and employing an assumption of uniform
pressure. A further improvement of the present model could be obtained following
those arguments, where we use the non-uniform pressure developed in this work
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Figure 7. Various case studies which illustrate the agreement between the approximation (dashed
curve, εp) and DNS (solid curve, ε∗p). The calculations are carried out the same way as in figure 1.
In each plot the abscissa is time t = 0 ns; note the scales differ sometimes by orders of magnitude
from case to case. The corresponding parameter values are given in table 1.

instead of a uniform one. In this way, we could assess the influence of pressure
inhomogeneity on the temperature field (especially the maximum temperature, which
is of most interest). We leave this for future work.

6. The Rayleigh–Plesset equation
We now have knowledge of the pressure inhomogeneity within sufficiently violently

collapsing bubbles. Thus, we are in a position to assess the validity and accuracy
of the assumption of uniform pressure to close the RPE. We will consider also the
importance of the inertial departure from uniform pressure on bubble dynamics.

We begin with any suitable version of the Rayleigh–Plesset equation, for example,
that by Lofstedt, Barber & Putterman (1993), which is written as

−RR̈
(

1− 2Ṙ

c

)
− 3

2
Ṙ2

(
1− 4

3

Ṙ

c

)
+

1

ρ
(P (R, t)− Pa(0, t)− P0)

+
R

ρc

(
dP (R, t)

dt
− dPa(0, t)

dt

)
= 0, (6.1)

where

P (R, t) +
4µṘ

R
+

2σ

R
= Pg(R, t) (6.2)
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Figure 8. A comparison of a uniform-pressure RPE solution (solid curve, equation (6.3)) and
an inertially corrected RPE solution (dashed, equation (6.4)). (a) A plot of the radius versus time
around the minimum radius; a small bump just after the minimum radius distinguishes the inertially
corrected model. This is better seen in (b) where only the inertially corrected RPE solution captures
the overshoot in acceleration after the major collapse. This overshoot has been observed before only
in DNS. The parameter values are: ambient radius R0 = 4 µm, pressure amplitude Pa = 1.4 atm and
frequency f = 26 500 Hz.

and

Pg(R) =
P0R

3k
0

(R3 − a3)k
. (6.3)

By suitable, we mean that the correction for liquid compressibility has been included.
Prosperetti (1999) has shown that various forms correct to order Mal in the liquid
Mach number are equivalent. As is the usual practice, we utilize a uniform gas
pressure Pg . We wish to know what is the consequence of using instead the inertial
correction (4.2) in place of the uniform pressure to close the RPE.

We simply take the uniform van der Waals pressure (6.3) as our pc(t), and use
(3.20) to amend the gas pressure on the bubble wall to read

Pg(R) =
P0R

3k
0

(R3 − a3)k

(
1− γ

2
εp

)
. (6.4)

We note that εp is a function of R̈, hence (6.1) becomes third order and we must add
R̈(t = 0) = 0 as an additional initial condition. The numerical integration leads to the
dashed curve in figure 8(a), which we compare to the uniform pressure RPE (solid
curve). A small bump is clearly seen immediately after the minimum radius in the
inertially corrected pressure simulation, but not in the uniform pressure solution. This
bump has been observed before only with full numerical simulation of the bubble
interior as in Vuong & Szeri (1996). Otherwise, the two solutions, with and without
the inertial pressure correction, are nearly identical.

A more sensitive discrimination is to plot εp(t) calculated with (4.2) using R(t)
from: (i) the homogeneous pressure RPE, and (ii) from the inertially corrected RPE;
this is shown in figure 8(b). One observes that the inertial pressure correction in the
RPE captures the characteristic overshoot visible in the DNS calculations in figure 7
(solid lines). This is further confirmation that (4.2) successfully captures the departure
from uniform pressure.

Notwithstanding this interesting observation, one would be correct to conclude
from figure 8 that, except for the small detail around the minimum radius, the
uniform-pressure RPE works just as well. Thus the RPE is accurate for much
more strongly collapsing bubbles than was previously thought. The uniform-pressure
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assumption, although invalid on physical grounds when the bubble collapses with
sufficient violence, serves well as far as the accuracy of the R(t) curve is concerned.

7. Characterization of violent collapses and validity of the RPE
Now we summarize the foregoing development, and our experience with DNS,

for practical use in general bubble dynamics. When a bubble suddenly expands or
shrinks, a pressure disturbance is initiated at the bubble wall and propagates into the
interior as a compression or rarefaction wave; the relative magnitude is given by the
dimensionless estimate

∂p∗

∂r∗
∼ − ρ̄

pc
R̈R = −γεp, (7.1)

where p∗ ≡ p/pc, r
∗ ≡ x = r/R(t). The time it takes for such a disturbance to sweep

through the bubble (roughly) is τ1 in (2.12).
It is possible to divide the ensuing behaviour into three regimes, as follows.
(i) When both εp and εerror are small, the disturbances are insignificant; the

pressure field is almost spatially uniform.
(ii) When εp is not small but εerror is small, the pressure possesses an essential,

inertially driven spatial inhomogeneity, given by the approximation (4.2). (In most
cases of interest (3.20) is sufficient.) Although in DNS one may observe slight wave-
like gas dynamics in addition to the inertially driven inhomogeneity of (4.2), that
equation serves as good global approximation.

(iii) Finally, when there is a rapid change in εp, designated by significant growth
in εerror , there is a strong wave-like character to the gas dynamics in addition to the
inertially driven inhomogeneity of (4.2). The fate of such waves and their potential
evolution into shocks can be analysed using a local expansion technique as in Lin &
Szeri (2001).

The case we examined in figures 1–5 serves as a good illustration of type (i)
and (ii) behaviour. In figure 5 although εerror increases briefly, this is insufficient
to signify strong wave-like gas dynamics, as one can see in figure 4. In the cases
(excluding c and f) of figure 7, the pressure field possesses an essential inhomogeneity
without significant wave-like motion in the gas; hence the pressure field is accurately
approximated by (4.2).

It is in cases (c) and (f ) of figure 7 where we observe significant wave-like gas
dynamics, i.e. type (iii) behaviour. In figure 9(a), we have plotted εerror for case 7(c)
to determine the accuracy of (4.2). One observes that where εerror grows, wave-like
motions become evident in the pressure field (figure 9b); this leads to a deviation
from the simple form of (4.2).

Finally, we note that in all three regimes (i–iii), the assumption of uniform pressure
in the RPE gives quite accurate solutions for R(t), although only in regime (i) is the
assumption valid on physical grounds. In regime (i) (e.g. figure 7, cases a and g), the
pressure field within the collapsing bubble is uniform to a high degree of accuracy.
In regime (ii) (e.g. figure 7, cases b, d, e, h and i ), the pressure field is essentially
non-uniform, with only minor wave-like disturbances superposed on (4.2). However,
as we have earlier discussed in § 6, this inhomogeneity only has an effect on R(t) in the
smallest details immediately following a strong collapse. In regime (iii) (e.g. figure 7,
cases c and f ), the approximation (4.2) loses its validity in the face of strong wave-like
motions in the gas. Upon close examination (4.2) is found to be an over-prediction
of the centre-to-wall pressure difference. This is because the wave-like motions in the



Violently collapsing bubbles and the Rayleigh–Plesset equation 161

10

8

6

4

2

0

–2

–0.5 0 0.1

(a)

Time (ns)

0 0.05 0.1 0.15 0.2 0.25

Radius (lm)

0.4

0.8

1.2

2.0

1.6

p
pc

(b)

ε p
, ε

er
ro

r

–4
–0.4 –0.3 –0.2 –0.1

–0.05 ns

–0.1 ns
0 ns

0.05 ns

0.1 ns

–0.2 ns
–0.4 ns
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gas ensue. (a) A plot of εp (solid) and εerror (dashed), calculated ex post facto using DNS values.
The latter becomes large indicating the inaccuracy of the approximation (4.2). (b) Corresponding
snapshots of the pressure field obtained by DNS.

gas always serve to ameliorate the centre-to-wall pressure difference. Even in regime
(iii), the uniform-pressure RPE only misses the detail of the tiny bounce after the
minimum radius of a strong collapse, which is on the time scale of hundreds of
picoseconds. Although the uniform-pressure assumption is far from valid in regime
(iii), the solution R(t) of the uniform-pressure RPE is accurate except for the tiny
bounce of § 6.

8. Conclusion
The present work has been a study of the self-consistency of the assumption of

spatially uniform pressure within a bubble, which is commonly employed to close the
Rayleigh–Plesset equation. We have developed the following results.

The natural parameter to use in evaluation of the uniform-pressure assumption in
violent collapses is the parameter εp(t) and not the gas Mach number.

An approximation was developed for the internal pressure field, which is quite
accurate when tested against DNS for bubble collapses without strong wave-like
motions in the gas. This led to an error estimate εerror associated with the uniform-
pressure approximation. Together, εp and εerror can be used to distinguish between
several regimes of behaviour.

It was found that when present, spatial non-uniformity of the pressure within
the bubble does not have a great influence on the accuracy of solutions R(t) of the
uniform-pressure RPE. The range of application of the RPE is thus extended to
the regime of very strongly collapsing bubbles.

Our arguments have, of necessity, been motivated by physical intuition supplemented
by the constraints of self-consistency. The latter fall into the category of only necessary
conditions but not sufficient conditions; hence, where possible, we have appealed
to direct numerical solutions to illustrate – and perhaps help to justify – the further
development of the theory.
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